Alphanumonly
The alphanumonly
filter removes tokens that contain non-ASCII characters, keeping only alphanumeric terms. This filter is useful for processing text where only basic letters and numbers are relevant, excluding any special characters or symbols.
Configuration
The alphanumonly
filter is built into Zilliz Cloud. To use it, simply specify its name in the filter
section within analyzer_params
.
- Python
- Java
- NodeJS
- Go
- cURL
analyzer_params = {
"tokenizer": "standard",
"filter": ["alphanumonly"],
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "standard");
analyzerParams.put("filter", Collections.singletonList("alphanumonly"));
const analyzer_params = {
"tokenizer": "standard",
"filter": ["alphanumonly"],
};
analyzerParams = map[string]any{"tokenizer": "standard", "filter": []any{"alphanumonly"}}
# restful
analyzerParams='{
"tokenizer": "standard",
"filter": [
"alphanumonly"
]
}'
The alphanumonly
filter operates on the terms generated by the tokenizer, so it must be used in combination with a tokenizer. For a list of tokenizers available in Zilliz Cloud, refer to Tokenizer Reference.
After defining analyzer_params
, you can apply them to a VARCHAR
field when defining a collection schema. This allows Zilliz Cloud to process the text in that field using the specified analyzer for efficient tokenization and filtering. For details, refer to Example use.
Examples
Before applying the analyzer configuration to your collection schema, verify its behavior using the run_analyzer
method.
Analyzer configuration
- Python
- Java
- NodeJS
- Go
- cURL
analyzer_params = {
"tokenizer": "standard",
"filter": ["alphanumonly"],
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "standard");
analyzerParams.put("filter", Collections.singletonList("alphanumonly"));
// javascript
analyzerParams = map[string]any{"tokenizer": "standard", "filter": []any{"alphanumonly"}}
# restful
Verification using run_analyzer
- Python
- Java
- NodeJS
- Go
- cURL
from pymilvus import (
MilvusClient,
)
client = MilvusClient(
uri="YOUR_CLUSTER_ENDPOINT",
token="YOUR_CLUSTER_TOKEN"
)
# Sample text to analyze
sample_text = "Milvus 2.0 @ Scale! #AI #Vector_Databasé"
# Run the standard analyzer with the defined configuration
result = client.run_analyzer(sample_text, analyzer_params)
print("Standard analyzer output:", result)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.RunAnalyzerReq;
import io.milvus.v2.service.vector.response.RunAnalyzerResp;
ConnectConfig config = ConnectConfig.builder()
.uri("YOUR_CLUSTER_ENDPOINT")
.token("YOUR_CLUSTER_TOKEN")
.build();
MilvusClientV2 client = new MilvusClientV2(config);
List<String> texts = new ArrayList<>();
texts.add("Milvus 2.0 @ Scale! #AI #Vector_Databasé");
RunAnalyzerResp resp = client.runAnalyzer(RunAnalyzerReq.builder()
.texts(texts)
.analyzerParams(analyzerParams)
.build());
List<RunAnalyzerResp.AnalyzerResult> results = resp.getResults();
// javascript
import (
"context"
"encoding/json"
"fmt"
"github.com/milvus-io/milvus/client/v2/milvusclient"
)
client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
Address: "YOUR_CLUSTER_ENDPOINT",
APIKey: "YOUR_CLUSTER_TOKEN",
})
if err != nil {
fmt.Println(err.Error())
// handle error
}
bs, _ := json.Marshal(analyzerParams)
texts := []string{"Milvus 2.0 @ Scale! #AI #Vector_Databasé"}
option := milvusclient.NewRunAnalyzerOption(texts).
WithAnalyzerParams(string(bs))
result, err := client.RunAnalyzer(ctx, option)
if err != nil {
fmt.Println(err.Error())
// handle error
}
# restful
Expected output
['Milvus', '2', '0', 'Scale', 'AI', 'Vector']