Query
In addition to ANN searches, Zilliz Cloud also supports metadata filtering through queries. This page introduces how to use Query, Get, and QueryIterators to perform metadata filtering.
Overview
A Collection can store various types of scalar fields. You can have Zilliz Cloud filter Entities based on one or more scalar fields. Zilliz Cloud offers three types of queries: Query, Get, and QueryIterator. The table below compares these three query types.
Get | Query | QueryIterator | |
---|---|---|---|
Applicable scenarios | To find entities that hold the specified primary keys. | To find all or a specified number of entities that meet the custom filtering conditions | To find all entities that meet the custom filtering conditions in paginated queries. |
Filtering method | By primary keys | By filtering expressions. | By filtering expressions. |
Mandatory parameters |
|
|
|
Optional parameters |
|
|
|
Returns | Returns entities that hold the specified primary keys in the specified collection or partition. | Returns all or a specified number of entities that meet the custom filtering conditions in the specified collection or partition. | Returns all entities that meet the custom filtering conditions in the specified collection or partition through paginated queries. |
For more on metadata filtering, refer to Filtering.
Use Get
When you need to find entities by their primary keys, you can use the Get method. The following code examples assume that there are three fields named id
, vector
, and color
in your collection and return the entities with primary keys 1
, 2
, and 3
.
[
{"id": 0, "vector": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], "color": "pink_8682"},
{"id": 1, "vector": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], "color": "red_7025"},
{"id": 2, "vector": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], "color": "orange_6781"},
{"id": 3, "vector": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], "color": "pink_9298"},
{"id": 4, "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], "color": "red_4794"},
{"id": 5, "vector": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], "color": "yellow_4222"},
{"id": 6, "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], "color": "red_9392"},
{"id": 7, "vector": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], "color": "grey_8510"},
{"id": 8, "vector": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], "color": "white_9381"},
{"id": 9, "vector": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], "color": "purple_4976"},
]
You can get entities by their IDs as follows.
- Python
- Java
- NodeJS
- cURL
from pymilvus import MilvusClient
client = MilvusClient(
uri="YOUR_CLUSTER_ENDPOINT",
token="YOUR_CLUSTER_TOKEN"
)
res = client.get(
collection_name="query_collection",
ids=[0, 1, 2],
output_fields=["vector", "color"]
)
print(res)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.GetReq
import io.milvus.v2.service.vector.request.GetResp
import java.util.*;
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("YOUR_CLUSTER_ENDPOINT")
.token("YOUR_CLUSTER_TOKEN")
.build());
GetReq getReq = GetReq.builder()
.collectionName("query_collection")
.ids(Arrays.asList(0, 1, 2))
.outputFields(Arrays.asList("vector", "color"))
.build();
GetResp getResp = client.get(getReq);
List<QueryResp.QueryResult> results = getResp.getGetResults();
for (QueryResp.QueryResult result : results) {
System.out.println(result.getEntity());
}
// Output
// {color=pink_8682, vector=[0.35803765, -0.6023496, 0.18414013, -0.26286206, 0.90294385], id=0}
// {color=red_7025, vector=[0.19886813, 0.060235605, 0.6976963, 0.26144746, 0.8387295], id=1}
// {color=orange_6781, vector=[0.43742132, -0.55975026, 0.6457888, 0.7894059, 0.20785794], id=2}
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const address = "YOUR_CLUSTER_ENDPOINT";
const token = "YOUR_CLUSTER_TOKEN";
const client = new MilvusClient({address, token});
const res = client.get({
collection_name="query_collection",
ids=[0,1,2],
output_fields=["vector", "color"]
})
export CLUSTER_ENDPOINT="YOUR_CLUSTER_ENDPOINT"
export TOKEN="YOUR_CLUSTER_TOKEN"
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "quick_setup",
"id": [0, 1, 2],
"outputFields": ["vector", "color"]
}'
# {"code":0,"cost":0,"data":[{"color":"pink_8682","id":0,"vector":[0.35803765,-0.6023496,0.18414013,-0.26286206,0.90294385]},{"color":"red_7025","id":1,"vector":[0.19886813,0.060235605,0.6976963,0.26144746,0.8387295]},{"color":"orange_6781","id":2,"vector":[0.43742132,-0.55975026,0.6457888,0.7894059,0.20785794]}]}
Use Query
When you need to find entities by custom filtering conditions, use the Query method. The following code examples assume there are three fields named id
, vector
, and color
and return the specified number of entities that hold a color
value starting with red
.
- Python
- Java
- Go
- NodeJS
- cURL
from pymilvus import MilvusClient
client = MilvusClient(
uri="YOUR_CLUSTER_ENDPOINT",
token="YOUR_CLUSTER_TOKEN"
)
res = client.query(
collection_name="query_collection",
filter="color like \"red%\"",
output_fields=["vector", "color"],
limit=3
)
import io.milvus.v2.service.vector.request.QueryReq
import io.milvus.v2.service.vector.request.QueryResp
QueryReq queryReq = QueryReq.builder()
.collectionName("query_collection")
.filter("color like \"red%\"")
.outputFields(Arrays.asList("vector", "color"))
.limit(3)
.build();
QueryResp getResp = client.query(queryReq);
List<QueryResp.QueryResult> results = getResp.getQueryResults();
for (QueryResp.QueryResult result : results) {
System.out.println(result.getEntity());
}
// Output
// {color=red_7025, vector=[0.19886813, 0.060235605, 0.6976963, 0.26144746, 0.8387295], id=1}
// {color=red_4794, vector=[0.44523495, -0.8757027, 0.82207793, 0.4640629, 0.3033748], id=4}
// {color=red_9392, vector=[0.8371978, -0.015764369, -0.31062937, -0.56266695, -0.8984948], id=6}
import (
"context"
"fmt"
"log"
"github.com/milvus-io/milvus/client/v2"
)
func ExampleClient_Query_basic() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
milvusAddr := "YOUR_CLUSTER_ENDPOINT"
token := "YOUR_CLUSTER_TOKEN"
cli, err := client.New(ctx, &client.ClientConfig{
Address: milvusAddr,
APIKey: token,
})
if err != nil {
log.Fatal("failed to connect to milvus server: ", err.Error())
}
defer cli.Close(ctx)
resultSet, err := cli.Query(ctx, client.NewQueryOption("query_collection").
WithFilter(`color like "red%"`).
WithOutputFields("vector", "color").
WithLimit(3))
fmt.Println(resultSet.GetColumn("color"))
}
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const address = "YOUR_CLUSTER_ENDPOINT";
const token = "YOUR_CLUSTER_TOKEN";
const client = new MilvusClient({address, token});
const res = client.query({
collection_name="quick_setup",
filter='color like "red%"',
output_fields=["vector", "color"],
limit(3)
})
export CLUSTER_ENDPOINT="YOUR_CLUSTER_ENDPOINT"
export TOKEN="YOUR_CLUSTER_TOKEN"
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "quick_setup",
"filter": "color like \"red%\"",
"limit": 3,
"outputFields": ["vector", "color"]
}'
#{"code":0,"cost":0,"data":[{"color":"red_7025","id":1,"vector":[0.19886813,0.060235605,0.6976963,0.26144746,0.8387295]},{"color":"red_4794","id":4,"vector":[0.44523495,-0.8757027,0.82207793,0.4640629,0.3033748]},{"color":"red_9392","id":6,"vector":[0.8371978,-0.015764369,-0.31062937,-0.56266695,-0.8984948]}]}
Use QueryIterator
When you need to find entities by custom filtering conditions through paginated queries, create a QueryIterator and use its next() method to iterate over all entities to find those meeting the filtering conditions. The following code examples assume that there are three fields named id
, vector
, and color
and return all entities that hold a color
value starting with red
.
- Python
- Java
- NodeJS
- cURL
from pymilvus import connections, Collection
connections.connect(
uri="YOUR_CLUSTER_ENDPOINT",
token="YOUR_CLUSTER_TOKEN"
)
collection = Collection("query_collection")
iterator = collection.query_iterator(
batch_size=10,
expr="color like \"red%\"",
output_fields=["color"]
)
results = []
while True:
result = iterator.next()
if not result:
iterator.close()
break
print(result)
results += result
import io.milvus.orm.iterator.QueryIterator;
import io.milvus.response.QueryResultsWrapper;
import io.milvus.v2.common.ConsistencyLevel;
import io.milvus.v2.service.vector.request.QueryIteratorReq;
QueryIteratorReq req = QueryIteratorReq.builder()
.collectionName("query_collection")
.expr("color like \"red%\"")
.batchSize(50L)
.outputFields(Collections.singletonList("color"))
.consistencyLevel(ConsistencyLevel.BOUNDED)
.build();
QueryIterator queryIterator = client.queryIterator(req);
while (true) {
List<QueryResultsWrapper.RowRecord> res = queryIterator.next();
if (res.isEmpty()) {
queryIterator.close();
break;
}
for (QueryResultsWrapper.RowRecord record : res) {
System.out.println(record);
}
}
// Output
// [color:red_7025, id:1]
// [color:red_4794, id:4]
// [color:red_9392, id:6]
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const iterator = await milvusClient.queryIterator({
collection_name: 'query_collection',
batchSize: 10,
expr: 'color like "red%"',
output_fields: ['color'],
});
const results = [];
for await (const value of iterator) {
results.push(...value);
page += 1;
}
# 暂无此方法
Queries in Partitions
You can also perform queries within one or multiple partitions by including the partition names in the Get, Query, or QueryIterator request. The following code examples assume that there is a partition named PartitionA in the collection.
- Python
- Java
- NodeJS
- cURL
from pymilvus import MilvusClient
client = MilvusClient(
uri="YOUR_CLUSTER_ENDPOINT",
token="YOUR_CLUSTER_TOKEN"
)
res = client.get(
collection_name="query_collection",
partitionNames=["partitionA"],
ids=[0, 1, 2],
output_fields=["vector", "color"]
)
from pymilvus import MilvusClient
client = MilvusClient(
uri="YOUR_CLUSTER_ENDPOINT",
token="YOUR_CLUSTER_TOKEN"
)
res = client.query(
collection_name="query_collection",
partitionNames=["partitionA"],
filter="color like \"red%\"",
output_fields=["vector", "color"],
limit=3
)
# 使用 QueryIterator
from pymilvus import connections, Collection
connections.connect(
uri="YOUR_CLUSTER_ENDPOINT",
token="YOUR_CLUSTER_TOKEN"
)
collection = Collection("query_collection")
iterator = collection.query_iterator(
partition_names=["partitionA"],
batch_size=10,
expr="color like \"red%\"",
output_fields=["color"]
)
results = []
while True:
result = iterator.next()
if not result:
iterator.close()
break
print(result)
results += result
GetReq getReq = GetReq.builder()
.collectionName("query_collection")
.partitionName("partitionA")
.ids(Arrays.asList(10, 11, 12))
.outputFields(Collections.singletonList("color"))
.build();
GetResp getResp = client.get(getReq);
QueryReq queryReq = QueryReq.builder()
.collectionName("query_collection")
.partitionNames(Collections.singletonList("partitionA"))
.filter("color like \"red%\"")
.outputFields(Collections.singletonList("color"))
.limit(3)
.build();
QueryResp getResp = client.query(queryReq);
QueryIteratorReq req = QueryIteratorReq.builder()
.collectionName("query_collection")
.partitionNames(Collections.singletonList("partitionA"))
.expr("color like \"red%\"")
.batchSize(50L)
.outputFields(Collections.singletonList("color"))
.consistencyLevel(ConsistencyLevel.BOUNDED)
.build();
QueryIterator queryIterator = client.queryIterator(req);
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const address = "YOUR_CLUSTER_ENDPOINT";
const token = "YOUR_CLUSTER_TOKEN";
const client = new MilvusClient({address, token});
// 使用 Get 方法
var res = client.query({
collection_name="query_collection",
partition_names=["partitionA"],
filter='color like "red%"',
output_fields=["vector", "color"],
limit(3)
})
// 使用 Query 方法
res = client.query({
collection_name="query_collection",
partition_names=["partitionA"],
filter="color like \"red%\"",
output_fields=["vector", "color"],
limit(3)
})
// 暂不支持使用 QueryIterator
const iterator = await milvusClient.queryIterator({
collection_name: 'query_collection',
partition_names: ['partitionA'],
batchSize: 10,
expr: 'color like "red%"',
output_fields: ['vector', 'color'],
});
const results = [];
for await (const value of iterator) {
results.push(...value);
page += 1;
}
export CLUSTER_ENDPOINT="YOUR_CLUSTER_ENDPOINT"
export TOKEN="YOUR_CLUSTER_TOKEN"
# 使用 Get 方法
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "query_collection",
"partitionNames": ["partitionA"],
"id": [0, 1, 2],
"outputFields": ["vector", "color"]
}'
# 使用 Query 方法
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "query_collection",
"partitionNames": ["partitionA"],
"filter": "color like \"red%\"",
"limit": 3,
"outputFields": ["vector", "color"],
"id": [0, 1, 2]
}'