Geometry FieldPublic Preview
When building applications like Geographic Information Systems (GIS), mapping tools, or location-based services, you often need to store and query geometric data. The GEOMETRY data type in Milvus solves this challenge by providing a native way to store and query flexible geometric data.
Use a GEOMETRY field when you need to combine vector similarity with spatial constraints, for example:
-
Location-Base Service (LBS): "find similar POIs within this city block"
-
Multi‑modal search: "retrieve similar photos within 1km of this point"
-
Maps & logistics: "assets inside a region" or "routes intersecting a path"
To use the GEOMETRY field, upgrade your SDK to the latest version.
What is a GEOMETRY field?
A GEOMETRY field is a schema-defined data type (DataType.GEOMETRY) in Zilliz Cloud that stores geometric data. When working with geometry fields, you interact with the data using the Well-Known Text (WKT) format, a human-readable representation used for both inserting data and querying. Internally, Zilliz Cloud converts WKT to Well-Known Binary (WKB) for efficient storage and processing, but you do not need to handle WKB directly.
The GEOMETRY data type supports the following geometric objects:
-
POINT:
POINT (x y); for example,POINT (13.403683 52.520711)wherex= longitude andy= latitude -
LINESTRING:
LINESTRING (x1 y1, x2 y2, …); for example,LINESTRING (13.40 52.52, 13.41 52.51) -
POLYGON:
POLYGON ((x1 y1, x2 y2, x3 y3, x1 y1)); for example,POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10)) -
MULTIPOINT:
MULTIPOINT ((x1 y1), (x2 y2), …), for example,MULTIPOINT ((10 40), (40 30), (20 20), (30 10)) -
MULTILINESTRING:
MULTILINESTRING ((x1 y1, …), (xk yk, …)), for example,MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30 10)) -
MULTIPOLYGON:
MULTIPOLYGON (((outer ring ...)), ((outer ring ...))), for example,MULTIPOLYGON (((30 20, 45 40, 10 40, 30 20)), ((15 5, 40 10, 10 20, 5 10, 15 5))) -
GEOMETRYCOLLECTION:
GEOMETRYCOLLECTION(POINT(x y), LINESTRING(x1 y1, x2 y2), ...), for example,GEOMETRYCOLLECTION (POINT (40 10), LINESTRING (10 10, 20 20, 10 40), POLYGON ((40 40, 20 45, 45 30, 40 40)))
Basic operations
The workflow for using a GEOMETRY field involves defining it in your collection schema, inserting geometric data, and then querying the data using specific filter expressions.
Step 1: Define a GEOMETRY field
To use a GEOMETRY field, explicitly define it in your collection schema when creating the collection. The following example demonstrates how to create a collection with a geo field of type DataType.GEOMETRY.
- Python
- Java
- NodeJS
- Go
- cURL
from pymilvus import MilvusClient, DataType
import numpy as np
dim = 8
collection_name = "geo_collection"
milvus_client = MilvusClient("YOUR_CLUSTER_ENDPOINT")
# Create schema with a GEOMETRY field
schema = milvus_client.create_schema(enable_dynamic_field=True)
schema.add_field("id", DataType.INT64, is_primary=True)
schema.add_field("embeddings", DataType.FLOAT_VECTOR, dim=dim)
schema.add_field("geo", DataType.GEOMETRY, nullable=True)
schema.add_field("name", DataType.VARCHAR, max_length=128)
milvus_client.create_collection(collection_name, schema=schema, consistency_level="Strong")
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
private static final String COLLECTION_NAME = "geo_collection";
private static final Integer DIM = 128;
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("YOUR_CLUSTER_ENDPOINT")
.token("YOUR_CLUSTER_TOKEN")
.build());
CreateCollectionReq.CollectionSchema collectionSchema = CreateCollectionReq.CollectionSchema.builder()
.enableDynamicField(true)
.build();
collectionSchema.addField(AddFieldReq.builder()
.fieldName("id")
.dataType(DataType.Int64)
.isPrimaryKey(true)
.build());
collectionSchema.addField(AddFieldReq.builder()
.fieldName("embeddings")
.dataType(DataType.FloatVector)
.dimension(DIM)
.build());
collectionSchema.addField(AddFieldReq.builder()
.fieldName("geo")
.dataType(DataType.Geometry)
.isNullable(true)
.build());
collectionSchema.addField(AddFieldReq.builder()
.fieldName("name")
.dataType(DataType.VarChar)
.maxLength(128)
.build());
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
.collectionName(COLLECTION_NAME)
.collectionSchema(collectionSchema)
.build();
client.createCollection(requestCreate);
import { MilvusClient, DataType } from '@zilliz/milvus2-sdk-node';
const milvusClient = new MilvusClient('YOUR_CLUSTER_ENDPOINT');
const schema = [
{ name: 'id', data_type: DataType.Int64, is_primary_key: true },
{ name: 'embeddings', data_type: DataType.FloatVector, dim: 8 },
{ name: 'geo', data_type: DataType.Geometry, is_nullable: true },
{ name: 'name', data_type: DataType.VarChar, max_length: 128 },
];
await milvusClient.createCollection({
collection_name: 'geo_collection',
fields: schema,
consistency_level: 'Strong',
});
// go
# restful
In this example, the GEOMETRY field defined in the collection schema allows null values with nullable=True. For details, refer to Nullable & Default.
Step 2: Insert data
Insert entities with geometry data in WKT format. Here’s an example with several geo points:
- Python
- Java
- NodeJS
- Go
- cURL
rng = np.random.default_rng(seed=19530)
geo_points = [
'POINT(13.399710 52.518010)',
'POINT(13.403934 52.522877)',
'POINT(13.405088 52.521124)',
'POINT(13.408223 52.516876)',
'POINT(13.400092 52.521507)',
'POINT(13.408529 52.519274)',
]
rows = [
{"id": 1, "name": "Shop A", "embeddings": rng.random((1, dim))[0], "geo": geo_points[0]},
{"id": 2, "name": "Shop B", "embeddings": rng.random((1, dim))[0], "geo": geo_points[1]},
{"id": 3, "name": "Shop C", "embeddings": rng.random((1, dim))[0], "geo": geo_points[2]},
{"id": 4, "name": "Shop D", "embeddings": rng.random((1, dim))[0], "geo": geo_points[3]},
{"id": 5, "name": "Shop E", "embeddings": rng.random((1, dim))[0], "geo": geo_points[4]},
{"id": 6, "name": "Shop F", "embeddings": rng.random((1, dim))[0], "geo": geo_points[5]},
]
insert_result = milvus_client.insert(collection_name, rows)
print(insert_result)
# Expected output:
# {'insert_count': 6, 'ids': [1, 2, 3, 4, 5, 6]}
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import io.milvus.v2.service.vector.request.InsertReq;
List<String> geoPoints = Arrays.asList(
"POINT(13.399710 52.518010)",
"POINT(13.403934 52.522877)",
"POINT(13.405088 52.521124)",
"POINT(13.408223 52.516876)",
"POINT(13.400092 52.521507)",
"POINT(13.408529 52.519274)"
);
List<String> names = Arrays.asList("Shop A", "Shop B", "Shop C", "Shop D", "Shop E", "Shop F");
Random ran = new Random();
Gson gson = new Gson();
List<JsonObject> rows = new ArrayList<>();
for (int i = 0; i < geoPoints.size(); i++) {
JsonObject row = new JsonObject();
row.addProperty("id", i);
row.addProperty("geo", geoPoints.get(i));
row.addProperty("name", names.get(i));
List<Float> vector = new ArrayList<>();
for (int d = 0; d < DIM; ++d) {
vector.add(ran.nextFloat());
}
row.add("embeddings", gson.toJsonTree(vector));
rows.add(row);
}
client.insert(InsertReq.builder()
.collectionName(COLLECTION_NAME)
.data(rows)
.build());
const geo_points = [
'POINT(13.399710 52.518010)',
'POINT(13.403934 52.522877)',
'POINT(13.405088 52.521124)',
'POINT(13.408223 52.516876)',
'POINT(13.400092 52.521507)',
'POINT(13.408529 52.519274)',
];
const rows = [
{"id": 1, "name": "Shop A", "embeddings": [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8], "geo": geo_points[0]},
{"id": 2, "name": "Shop B", "embeddings": [0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9], "geo": geo_points[1]},
{"id": 3, "name": "Shop C", "embeddings": [0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0], "geo": geo_points[2]},
{"id": 4, "name": "Shop D", "embeddings": [0.4,0.5,0.6,0.7,0.8,0.9,1.0,0.1], "geo": geo_points[3]},
{"id": 5, "name": "Shop E", "embeddings": [0.5,0.6,0.7,0.8,0.9,1.0,0.1,0.2], "geo": geo_points[4]},
{"id": 6, "name": "Shop F", "embeddings": [0.6,0.7,0.8,0.9,1.0,0.1,0.2,0.3], "geo": geo_points[5]},
];
const insert_result = await milvusClient.insert({
collection_name: 'geo_collection',
data: rows,
});
console.log(insert_result);
// go
# restful
Step 3: Filtering operations
Before you can perform filtering operations on GEOMETRY fields, make sure:
-
You have created an index on each vector field.
-
The collection is loaded into memory.
Show code
- Python
- Java
- NodeJS
- Go
- cURL
index_params = milvus_client.prepare_index_params()
index_params.add_index(field_name="embeddings", metric_type="L2")
milvus_client.create_index(collection_name, index_params)
milvus_client.load_collection(collection_name)
import io.milvus.v2.common.IndexParam;
import io.milvus.v2.service.index.request.CreateIndexReq;
List<IndexParam> indexParams = new ArrayList<>();
indexParams.add(IndexParam.builder()
.fieldName("embeddings")
.indexType(IndexParam.IndexType.AUTOINDEX)
.metricType(IndexParam.MetricType.L2)
.build());
client.createIndex(CreateIndexReq.builder()
.collectionName(COLLECTION_NAME)
.indexParams(indexParams)
.build());
const index_params = {
field_name: "embeddings",
index_type: "IVF_FLAT",
metric_type: "L2",
params: { nlist: 128 },
};
await milvusClient.createIndex({
collection_name: 'geo_collection',
index_name: 'embeddings_index',
index_params: index_params,
});
await milvusClient.loadCollection({
collection_name: 'geo_collection',
});
// go
# restful
Once these requirements are met, you can use expressions with dedicated geometry operators to filter your collection based on the geometric values.
Define filter expressions
To filter on a GEOMETRY field, use a geometry operator in an expression:
-
General:
{operator}(geo_field, '{wkt}') -
Distance-based:
ST_DWITHIN(geo_field, '{wkt}', distance)
Where:
-
operatoris one of the supported geometry operators (e.g.,ST_CONTAINS,ST_INTERSECTS). Operator names must be all uppercase or all lowercase. For a list of supported operators, refer to Supported geometry operators. -
geo_fieldis the name of yourGEOMETRYfield. -
'{wkt}'is the WKT representation of the geometry to query. -
distanceis the threshold specifically forST_DWITHIN.
The following examples demonstrate how to use different geometry-specific operators in a filter expression:
Example 1: Find entities within a rectangular area
- Python
- Java
- NodeJS
- Go
- cURL
top_left_lon, top_left_lat = 13.403683, 52.520711
bottom_right_lon, bottom_right_lat = 13.455868, 52.495862
bounding_box_wkt = f"POLYGON(({top_left_lon} {top_left_lat}, {bottom_right_lon} {top_left_lat}, {bottom_right_lon} {bottom_right_lat}, {top_left_lon} {bottom_right_lat}, {top_left_lon} {top_left_lat}))"
query_results = milvus_client.query(
collection_name,
filter=f"st_within(geo, '{bounding_box_wkt}')",
output_fields=["name", "geo"]
)
for ret in query_results:
print(ret)
# Expected output:
# {'name': 'Shop D', 'geo': 'POINT (13.408223 52.516876)', 'id': 4}
# {'name': 'Shop F', 'geo': 'POINT (13.408529 52.519274)', 'id': 6}
# {'name': 'Shop A', 'geo': 'POINT (13.39971 52.51801)', 'id': 1}
# {'name': 'Shop B', 'geo': 'POINT (13.403934 52.522877)', 'id': 2}
# {'name': 'Shop C', 'geo': 'POINT (13.405088 52.521124)', 'id': 3}
# {'name': 'Shop D', 'geo': 'POINT (13.408223 52.516876)', 'id': 4}
# {'name': 'Shop E', 'geo': 'POINT (13.400092 52.521507)', 'id': 5}
# {'name': 'Shop F', 'geo': 'POINT (13.408529 52.519274)', 'id': 6}
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;
float topLeftLon = 13.403683f;
float topLeftLat = 52.520711f;
float bottomRightLon = 13.455868f;
float bottomRightLat = 52.495862f;
String boundingBoxWkt = String.format("POLYGON((%f %f, %f %f, %f %f, %f %f, %f %f))",
topLeftLon, topLeftLat, bottomRightLon, topLeftLat, bottomRightLon, bottomRightLat,
topLeftLon, bottomRightLat, topLeftLon, topLeftLat);
String filter = String.format("st_within(geo, '%s')", boundingBoxWkt);
QueryResp queryResp = client.query(QueryReq.builder()
.collectionName(COLLECTION_NAME)
.filter(filter)
.outputFields(Arrays.asList("name", "geo"))
.build());
List<QueryResp.QueryResult> queryResults = queryResp.getQueryResults();
System.out.println("Query results:");
for (QueryResp.QueryResult result : queryResults) {
System.out.println(result.getEntity());
}
const top_left_lon = 13.403683;
const top_left_lat = 52.520711;
const bottom_right_lon = 13.455868;
const bottom_right_lat = 52.495862;
const bounding_box_wkt = `POLYGON((${top_left_lon} ${top_left_lat}, ${bottom_right_lon} ${top_left_lat}, ${bottom_right_lon} ${bottom_right_lat}, ${top_left_lon} ${bottom_right_lat}, ${top_left_lon} ${top_left_lat}))`;
const query_results = await milvusClient.query({
collection_name: 'geo_collection',
filter: `st_within(geo, '${bounding_box_wkt}')`,
output_fields: ['name', 'geo'],
});
for (const ret of query_results.data) {
console.log(ret);
}
// go
# restful
Example 2: Find entities within 1km of a central point
- Python
- Java
- NodeJS
- Go
- cURL
center_point_lon, center_point_lat = 13.403683, 52.520711
radius_meters = 1000.0
central_point_wkt = f"POINT({center_point_lon} {center_point_lat})"
query_results = milvus_client.query(
collection_name,
filter=f"st_dwithin(geo, '{central_point_wkt}', {radius_meters})",
output_fields=["name", "geo"]
)
for ret in query_results:
print(ret)
# Expected output:
# hit: {'id': 4, 'distance': 0.9823770523071289, 'entity': {'name': 'Shop D', 'geo': 'POINT (13.408223 52.516876)'}}
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;
float centerPointLon = 13.403683f;
float centerPointLat = 52.520711f;
float radiusMeters = 1000.0f;
String centralPointWkt = String.format("POINT(%f %f)", centerPointLon, centerPointLat);
String filter=String.format("st_dwithin(geo, '%s', %f)", centralPointWkt, radiusMeters);
QueryResp queryResp = client.query(QueryReq.builder()
.collectionName(COLLECTION_NAME)
.filter(filter)
.outputFields(Arrays.asList("name", "geo"))
.build());
List<QueryResp.QueryResult> queryResults = queryResp.getQueryResults();
System.out.println("Query results:");
for (QueryResp.QueryResult result : queryResults) {
System.out.println(result.getEntity());
}
const center_point_lon = 13.403683;
const center_point_lat = 52.520711;
const radius_meters = 1000.0;
const central_point_wkt = `POINT(${center_point_lon} ${center_point_lat})`;
const query_results_dwithin = await milvusClient.query({
collection_name: 'geo_collection',
filter: `st_dwithin(geo, '${central_point_wkt}', ${radius_meters})`,
output_fields: ['name', 'geo'],
});
for (const ret of query_results_dwithin.data) {
console.log(ret);
}
// go
# restful
Example 3: Combine vector similarity with a spatial filter
- Python
- Java
- NodeJS
- Go
- cURL
vectors_to_search = rng.random((1, dim))
result = milvus_client.search(
collection_name,
vectors_to_search,
limit=3,
output_fields=["name", "geo"],
filter=f"st_within(geo, '{bounding_box_wkt}')"
)
for hits in result:
for hit in hits:
print(f"hit: {hit}")
# Expected output:
# hit: {'id': 6, 'distance': 1.3406795263290405, 'entity': {'name': 'Shop F', 'geo': 'POINT (13.408529 52.519274)'}}
import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp;
Random ran = new Random();
List<Float> vector = new ArrayList<>();
for (int d = 0; d < DIM; ++d) {
vector.add(ran.nextFloat());
}
String filter=String.format("st_within(geo, '%s')", boundingBoxWkt);
SearchReq request = SearchReq.builder()
.collectionName(COLLECTION_NAME)
.data(Collections.singletonList(new FloatVec(vector)))
.limit(3)
.filter(filter)
.outputFields(Arrays.asList("name", "geo"))
.build();
SearchResp statusR = client.search(request);
List<List<SearchResp.SearchResult>> searchResults = statusR.getSearchResults();
for (List<SearchResp.SearchResult> results : searchResults) {
for (SearchResp.SearchResult result : results) {
System.out.printf("ID: %d, Score: %f, %s\n", (long)result.getId(), result.getScore(), result.getEntity().toString());
}
}
const vectors_to_search = [[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]];
const search_results = await milvusClient.search({
collection_name: "geo_collection",
vectors: vectors_to_search,
limit: 3,
output_fields: ["name", "geo"],
filter: `st_within(geo, '${bounding_box_wkt}')`,
});
for (const hits of search_results.results) {
for (const hit of hits) {
console.log(`hit: ${JSON.stringify(hit)}`);
}
}
// go
# restful
Next: Accelerate queries
By default, queries on GEOMETRY fields without an index will perform a full scan of all rows, which can be slow on large datasets. To accelerate geometric queries, create an AUTOINDEX index on your GEOMETRY field.
For details, refer to Index Scalar Fields.
FAQ
If I've enabled the dynamic field feature for my collection, can I insert geometric data into a dynamic field key?
No, geometry data cannot be inserted into a dynamic field. Before inserting geometric data, make sure the GEOMETRY field has been explicitly defined in your collection schema.
Does the GEOMETRY field support the mmap feature?
Yes, the GEOMETRY field supports mmap. For more information, refer to Use mmap.
Can I define the GEOMETRY field as nullable or set a default value?
Yes, the GEOMETRY field supports the nullable attribute and a default value in WKT format. For more information, refer to Nullable & Default.