Skip to main content

encode_queries()

This operation takes in a list of query strings and encodes each query into a vector embedding.

Request syntax

encode_queries(
queries: List[str],
) -> Dict

PARAMETERS:

  • queries (List[str])

    A list of string values, where each string represents a query that will be passed to the embedding model for encoding. The model will generate an embedding vector for each string in the list.

RETURN TYPE:

Dict

RETURNS:

A dictionary that contains the encoded embeddings, both dense and sparse.

Exceptions:

None

Examples

from pymilvus.model.hybrid import MGTEEmbeddingFunction

ef = MGTEEmbeddingFunction()

queries = ["When was artificial intelligence founded",
"Where was Alan Turing born?"]

query_embeddings = ef.encode_queries(queries)

print("Embeddings:", query_embeddings)
print(ef.dim)

# Embeddings: {'dense': [tensor([ 6.5883e-03, -7.9415e-03, -3.3669e-02, -2.6450e-02, 1.4345e-02,
# 1.9612e-02, -8.1679e-02, 5.6361e-02, 6.9020e-02, 1.9827e-02,
# -9.2933e-03, -1.9995e-02, -1.0055e-01, -5.4053e-02, -8.5991e-02,
# 8.3004e-02, 1.0870e-01, 1.1565e-01, 2.1268e-02, -1.3782e-02,
# ...
# 3.2847e-02, -2.3751e-02, 3.4475e-02, 5.3623e-02, -3.3894e-02,
# 7.9408e-02, 8.2720e-03, -2.3459e-02], device='mps:0')], 'sparse': <Compressed Sparse Row sparse array of dtype 'float64'
# with 13 stored elements and shape (2, 250002)>}

# {'dense': 768, 'sparse': 250002}