EmbeddingList
An EmbeddingList instance represents a list of vector embeddings. You can use an EmbeddingList instance to build the query vectors in a search against a vector field in an Array of Structs field.
class pymilvus.EmbeddingList
Constructor
Constructs an empty embedding list or a list of given vector embeddings.
EmbeddingList(
embeddings: Optional[Union[np.ndarray, List[np.ndarray]],
dim: Optional[int],
dtype: Optional[Union[np.dtype, str, DataType]]
)
PARAMETERS:
-
embeddings (np.ndarray, List[np.ndarray) -
A list of vector embeddings, which can be either of the following types:
-
np.ndarray with shape (n, dim), indicating a list of multiple vector embeddings
-
np.ndarray with shape (dim,), indicating a single vector embedding
-
List[np.ndarray], indicating a list of vector embedding arrays
-
-
dim (int) -
The dimensionality of the vector embeddings that are specified in the embedding parameter, for validation purposes.
If provided, all specified vector embeddings must adhere to the dimensionality restriction.
-
dtype (np.dtype, str, DataType) -
-
np.dtype, such as
np.float32,np.float16, ornp.unit8 -
string, such as
'float32','float16', or'uint8' -
DataType, such as
DataType.FLOAT_VECTOR,DataType.FLOAT16_VECTOR,DataType.BFLOAT16_VECTOR,DataType.INT8_VECTOR, orDataType.BINARY_VECTOR
-
RETURN TYPE:
EmbeddingList
RETURNS:
An EmbeddingList instance.
Examples
from pymilvus import EmbeddingList
# create an empty embedding list
embeddingList1 = EmbeddingList()
# create an embedding list with a single vector embedding of 5 dimensions
embeddingList2 = EmbeddingList(
embeddings=[0.1, 0.2, 0.3, 0.4, 0.5],
dim=5
)
# create an embedding list with two vector embeddings, each having five dimensions
embeddingList3 = EmbeddingList(
embeddings= [[0.1, 0.2, 0.3, 0.4, 0.5], [0.5, 0.4, 0.3, 0.2, 0.1]],
dim=5
)